Copied to
clipboard

G = C32⋊CSU2(𝔽3)  order 432 = 24·33

1st semidirect product of C32 and CSU2(𝔽3) acting via CSU2(𝔽3)/Q8=S3

non-abelian, soluble

Aliases: C321CSU2(𝔽3), C6.5S4⋊C3, C6.5(C3×S4), (C3×C6).3S4, Q8⋊He3.1C2, Q8.(C32⋊C6), (Q8×C32).9S3, (C3×SL2(𝔽3)).C6, C2.2(C62⋊S3), C3.3(C3×CSU2(𝔽3)), (C3×Q8).5(C3×S3), SmallGroup(432,247)

Series: Derived Chief Lower central Upper central

C1C2Q8C3×SL2(𝔽3) — C32⋊CSU2(𝔽3)
C1C2Q8C3×Q8C3×SL2(𝔽3)Q8⋊He3 — C32⋊CSU2(𝔽3)
C3×SL2(𝔽3) — C32⋊CSU2(𝔽3)
C1C2

Generators and relations for C32⋊CSU2(𝔽3)
 G = < a,b,c,d,e,f | a3=b3=c4=e3=1, d2=f2=c2, eae-1=ab=ba, ac=ca, ad=da, af=fa, bc=cb, bd=db, be=eb, fbf-1=b-1, dcd-1=fdf-1=c-1, ece-1=cd, fcf-1=c2d, ede-1=c, fef-1=e-1 >

3C3
12C3
24C3
3C4
18C4
3C6
12C6
24C6
4C32
8C32
9C8
9Q8
3C12
3C12
6Dic3
6C12
18C12
36Dic3
4C3×C6
8C3×C6
4He3
9Q16
3C3⋊C8
3Dic6
3C3×Q8
3SL2(𝔽3)
6SL2(𝔽3)
9C24
9C3×Q8
3C3×C12
4C3⋊Dic3
6C3×Dic3
4C2×He3
3C3⋊Q16
9C3×Q16
9CSU2(𝔽3)
2C3×SL2(𝔽3)
3C3×C3⋊C8
3C3×Dic6
4C32⋊C12
3C3×C3⋊Q16

Character table of C32⋊CSU2(𝔽3)

 class 123A3B3C3D3E3F4A4B6A6B6C6D6E6F8A8B12A12B12C12D12E12F12G24A24B24C24D
 size 11233242424636233242424181866121212363618181818
ρ111111111111111111111111111111    trivial
ρ2111111111-1111111-1-111111-1-1-1-1-1-1    linear of order 2
ρ3111ζ3ζ32ζ31ζ32111ζ32ζ31ζ32ζ311ζ32ζ31ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ4111ζ3ζ32ζ31ζ321-11ζ32ζ31ζ32ζ3-1-1ζ32ζ31ζ32ζ3ζ6ζ65ζ6ζ6ζ65ζ65    linear of order 6
ρ5111ζ32ζ3ζ321ζ31-11ζ3ζ321ζ3ζ32-1-1ζ3ζ321ζ3ζ32ζ65ζ6ζ65ζ65ζ6ζ6    linear of order 6
ρ6111ζ32ζ3ζ321ζ3111ζ3ζ321ζ3ζ3211ζ3ζ321ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ722222-1-1-120222-1-1-10022222000000    orthogonal lifted from S3
ρ82-2222-1-1-100-2-2-21112-200000002-2-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ92-2222-1-1-100-2-2-2111-220000000-222-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ10222-1--3-1+-3ζ6-1ζ65202-1+-3-1--3-1ζ65ζ600-1+-3-1--32-1+-3-1--3000000    complex lifted from C3×S3
ρ11222-1+-3-1--3ζ65-1ζ6202-1--3-1+-3-1ζ6ζ6500-1--3-1+-32-1--3-1+-3000000    complex lifted from C3×S3
ρ122-22-1--3-1+-3ζ6-1ζ6500-21--31+-31ζ3ζ322-2000000083ζ38ζ387ζ385ζ387ζ3285ζ3283ζ328ζ32    complex lifted from C3×CSU2(𝔽3)
ρ132-22-1+-3-1--3ζ65-1ζ600-21+-31--31ζ32ζ3-22000000087ζ3285ζ3283ζ328ζ3283ζ38ζ387ζ385ζ3    complex lifted from C3×CSU2(𝔽3)
ρ142-22-1+-3-1--3ζ65-1ζ600-21+-31--31ζ32ζ32-2000000083ζ328ζ3287ζ3285ζ3287ζ385ζ383ζ38ζ3    complex lifted from C3×CSU2(𝔽3)
ρ152-22-1--3-1+-3ζ6-1ζ6500-21--31+-31ζ3ζ32-22000000087ζ385ζ383ζ38ζ383ζ328ζ3287ζ3285ζ32    complex lifted from C3×CSU2(𝔽3)
ρ1633333000-1-133300011-1-1-1-1-1-1-11111    orthogonal lifted from S4
ρ1733333000-11333000-1-1-1-1-1-1-111-1-1-1-1    orthogonal lifted from S4
ρ18333-3+3-3/2-3-3-3/2000-113-3-3-3/2-3+3-3/2000-1-1ζ6ζ65-1ζ6ζ65ζ32ζ3ζ6ζ6ζ65ζ65    complex lifted from C3×S4
ρ19333-3-3-3/2-3+3-3/2000-113-3+3-3/2-3-3-3/2000-1-1ζ65ζ6-1ζ65ζ6ζ3ζ32ζ65ζ65ζ6ζ6    complex lifted from C3×S4
ρ20333-3-3-3/2-3+3-3/2000-1-13-3+3-3/2-3-3-3/200011ζ65ζ6-1ζ65ζ6ζ65ζ6ζ3ζ3ζ32ζ32    complex lifted from C3×S4
ρ21333-3+3-3/2-3-3-3/2000-1-13-3-3-3/2-3+3-3/200011ζ6ζ65-1ζ6ζ65ζ6ζ65ζ32ζ32ζ3ζ3    complex lifted from C3×S4
ρ224-444411100-4-4-4-1-1-10000000000000    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ234-44-2+2-3-2-2-3ζ31ζ3200-42+2-32-2-3-1ζ6ζ650000000000000    complex lifted from C3×CSU2(𝔽3)
ρ244-44-2-2-3-2+2-3ζ321ζ300-42-2-32+2-3-1ζ65ζ60000000000000    complex lifted from C3×CSU2(𝔽3)
ρ2566-30000060-3000000000-300000000    orthogonal lifted from C32⋊C6
ρ2666-300000-20-30000000441-2-2000000    orthogonal lifted from C62⋊S3
ρ2766-300000-20-30000000-2+2-3-2-2-311--31+-3000000    complex lifted from C62⋊S3
ρ2866-300000-20-30000000-2-2-3-2+2-311+-31--3000000    complex lifted from C62⋊S3
ρ2912-12-600000006000000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C32⋊CSU2(𝔽3)
On 144 points
Generators in S144
(5 138 130)(6 139 131)(7 140 132)(8 137 129)(29 37 45)(30 38 46)(31 39 47)(32 40 48)(33 41 50)(34 42 51)(35 43 52)(36 44 49)(53 69 61)(54 70 62)(55 71 63)(56 72 64)(57 76 65)(58 73 66)(59 74 67)(60 75 68)(101 109 117)(102 110 118)(103 111 119)(104 112 120)(105 113 122)(106 114 123)(107 115 124)(108 116 121)(125 141 133)(126 142 134)(127 143 135)(128 144 136)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 130 138)(6 131 139)(7 132 140)(8 129 137)(9 25 17)(10 26 18)(11 27 19)(12 28 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(33 50 41)(34 51 42)(35 52 43)(36 49 44)(53 69 61)(54 70 62)(55 71 63)(56 72 64)(57 76 65)(58 73 66)(59 74 67)(60 75 68)(77 85 93)(78 86 94)(79 87 95)(80 88 96)(81 89 99)(82 90 100)(83 91 97)(84 92 98)(101 109 117)(102 110 118)(103 111 119)(104 112 120)(105 113 122)(106 114 123)(107 115 124)(108 116 121)(125 133 141)(126 134 142)(127 135 143)(128 136 144)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 11 3 9)(2 10 4 12)(5 143 7 141)(6 142 8 144)(13 18 15 20)(14 17 16 19)(21 26 23 28)(22 25 24 27)(29 34 31 36)(30 33 32 35)(37 42 39 44)(38 41 40 43)(45 51 47 49)(46 50 48 52)(53 58 55 60)(54 57 56 59)(61 66 63 68)(62 65 64 67)(69 73 71 75)(70 76 72 74)(77 83 79 81)(78 82 80 84)(85 91 87 89)(86 90 88 92)(93 97 95 99)(94 100 96 98)(101 106 103 108)(102 105 104 107)(109 114 111 116)(110 113 112 115)(117 123 119 121)(118 122 120 124)(125 130 127 132)(126 129 128 131)(133 138 135 140)(134 137 136 139)
(1 58 29)(2 55 33)(3 60 31)(4 53 35)(5 96 120)(6 98 123)(7 94 118)(8 100 121)(9 56 32)(10 59 34)(11 54 30)(12 57 36)(13 63 41)(14 68 39)(15 61 43)(16 66 37)(17 64 40)(18 67 42)(19 62 38)(20 65 44)(21 71 50)(22 75 47)(23 69 52)(24 73 45)(25 72 48)(26 74 51)(27 70 46)(28 76 49)(77 107 126)(78 102 132)(79 105 128)(80 104 130)(81 103 125)(82 108 129)(83 101 127)(84 106 131)(85 115 134)(86 110 140)(87 113 136)(88 112 138)(89 111 133)(90 116 137)(91 109 135)(92 114 139)(93 124 142)(95 122 144)(97 117 143)(99 119 141)
(1 77 3 79)(2 81 4 83)(5 72 7 70)(6 76 8 74)(9 78 11 80)(10 84 12 82)(13 89 15 91)(14 87 16 85)(17 86 19 88)(18 92 20 90)(21 99 23 97)(22 95 24 93)(25 94 27 96)(26 98 28 100)(29 107 31 105)(30 104 32 102)(33 103 35 101)(34 106 36 108)(37 115 39 113)(38 112 40 110)(41 111 43 109)(42 114 44 116)(45 124 47 122)(46 120 48 118)(49 121 51 123)(50 119 52 117)(53 127 55 125)(54 130 56 132)(57 129 59 131)(58 126 60 128)(61 135 63 133)(62 138 64 140)(65 137 67 139)(66 134 68 136)(69 143 71 141)(73 142 75 144)

G:=sub<Sym(144)| (5,138,130)(6,139,131)(7,140,132)(8,137,129)(29,37,45)(30,38,46)(31,39,47)(32,40,48)(33,41,50)(34,42,51)(35,43,52)(36,44,49)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,76,65)(58,73,66)(59,74,67)(60,75,68)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,122)(106,114,123)(107,115,124)(108,116,121)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,130,138)(6,131,139)(7,132,140)(8,129,137)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,50,41)(34,51,42)(35,52,43)(36,49,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,76,65)(58,73,66)(59,74,67)(60,75,68)(77,85,93)(78,86,94)(79,87,95)(80,88,96)(81,89,99)(82,90,100)(83,91,97)(84,92,98)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,122)(106,114,123)(107,115,124)(108,116,121)(125,133,141)(126,134,142)(127,135,143)(128,136,144), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,11,3,9)(2,10,4,12)(5,143,7,141)(6,142,8,144)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,51,47,49)(46,50,48,52)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67)(69,73,71,75)(70,76,72,74)(77,83,79,81)(78,82,80,84)(85,91,87,89)(86,90,88,92)(93,97,95,99)(94,100,96,98)(101,106,103,108)(102,105,104,107)(109,114,111,116)(110,113,112,115)(117,123,119,121)(118,122,120,124)(125,130,127,132)(126,129,128,131)(133,138,135,140)(134,137,136,139), (1,58,29)(2,55,33)(3,60,31)(4,53,35)(5,96,120)(6,98,123)(7,94,118)(8,100,121)(9,56,32)(10,59,34)(11,54,30)(12,57,36)(13,63,41)(14,68,39)(15,61,43)(16,66,37)(17,64,40)(18,67,42)(19,62,38)(20,65,44)(21,71,50)(22,75,47)(23,69,52)(24,73,45)(25,72,48)(26,74,51)(27,70,46)(28,76,49)(77,107,126)(78,102,132)(79,105,128)(80,104,130)(81,103,125)(82,108,129)(83,101,127)(84,106,131)(85,115,134)(86,110,140)(87,113,136)(88,112,138)(89,111,133)(90,116,137)(91,109,135)(92,114,139)(93,124,142)(95,122,144)(97,117,143)(99,119,141), (1,77,3,79)(2,81,4,83)(5,72,7,70)(6,76,8,74)(9,78,11,80)(10,84,12,82)(13,89,15,91)(14,87,16,85)(17,86,19,88)(18,92,20,90)(21,99,23,97)(22,95,24,93)(25,94,27,96)(26,98,28,100)(29,107,31,105)(30,104,32,102)(33,103,35,101)(34,106,36,108)(37,115,39,113)(38,112,40,110)(41,111,43,109)(42,114,44,116)(45,124,47,122)(46,120,48,118)(49,121,51,123)(50,119,52,117)(53,127,55,125)(54,130,56,132)(57,129,59,131)(58,126,60,128)(61,135,63,133)(62,138,64,140)(65,137,67,139)(66,134,68,136)(69,143,71,141)(73,142,75,144)>;

G:=Group( (5,138,130)(6,139,131)(7,140,132)(8,137,129)(29,37,45)(30,38,46)(31,39,47)(32,40,48)(33,41,50)(34,42,51)(35,43,52)(36,44,49)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,76,65)(58,73,66)(59,74,67)(60,75,68)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,122)(106,114,123)(107,115,124)(108,116,121)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,130,138)(6,131,139)(7,132,140)(8,129,137)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,50,41)(34,51,42)(35,52,43)(36,49,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,76,65)(58,73,66)(59,74,67)(60,75,68)(77,85,93)(78,86,94)(79,87,95)(80,88,96)(81,89,99)(82,90,100)(83,91,97)(84,92,98)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,122)(106,114,123)(107,115,124)(108,116,121)(125,133,141)(126,134,142)(127,135,143)(128,136,144), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,11,3,9)(2,10,4,12)(5,143,7,141)(6,142,8,144)(13,18,15,20)(14,17,16,19)(21,26,23,28)(22,25,24,27)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,51,47,49)(46,50,48,52)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67)(69,73,71,75)(70,76,72,74)(77,83,79,81)(78,82,80,84)(85,91,87,89)(86,90,88,92)(93,97,95,99)(94,100,96,98)(101,106,103,108)(102,105,104,107)(109,114,111,116)(110,113,112,115)(117,123,119,121)(118,122,120,124)(125,130,127,132)(126,129,128,131)(133,138,135,140)(134,137,136,139), (1,58,29)(2,55,33)(3,60,31)(4,53,35)(5,96,120)(6,98,123)(7,94,118)(8,100,121)(9,56,32)(10,59,34)(11,54,30)(12,57,36)(13,63,41)(14,68,39)(15,61,43)(16,66,37)(17,64,40)(18,67,42)(19,62,38)(20,65,44)(21,71,50)(22,75,47)(23,69,52)(24,73,45)(25,72,48)(26,74,51)(27,70,46)(28,76,49)(77,107,126)(78,102,132)(79,105,128)(80,104,130)(81,103,125)(82,108,129)(83,101,127)(84,106,131)(85,115,134)(86,110,140)(87,113,136)(88,112,138)(89,111,133)(90,116,137)(91,109,135)(92,114,139)(93,124,142)(95,122,144)(97,117,143)(99,119,141), (1,77,3,79)(2,81,4,83)(5,72,7,70)(6,76,8,74)(9,78,11,80)(10,84,12,82)(13,89,15,91)(14,87,16,85)(17,86,19,88)(18,92,20,90)(21,99,23,97)(22,95,24,93)(25,94,27,96)(26,98,28,100)(29,107,31,105)(30,104,32,102)(33,103,35,101)(34,106,36,108)(37,115,39,113)(38,112,40,110)(41,111,43,109)(42,114,44,116)(45,124,47,122)(46,120,48,118)(49,121,51,123)(50,119,52,117)(53,127,55,125)(54,130,56,132)(57,129,59,131)(58,126,60,128)(61,135,63,133)(62,138,64,140)(65,137,67,139)(66,134,68,136)(69,143,71,141)(73,142,75,144) );

G=PermutationGroup([[(5,138,130),(6,139,131),(7,140,132),(8,137,129),(29,37,45),(30,38,46),(31,39,47),(32,40,48),(33,41,50),(34,42,51),(35,43,52),(36,44,49),(53,69,61),(54,70,62),(55,71,63),(56,72,64),(57,76,65),(58,73,66),(59,74,67),(60,75,68),(101,109,117),(102,110,118),(103,111,119),(104,112,120),(105,113,122),(106,114,123),(107,115,124),(108,116,121),(125,141,133),(126,142,134),(127,143,135),(128,144,136)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,130,138),(6,131,139),(7,132,140),(8,129,137),(9,25,17),(10,26,18),(11,27,19),(12,28,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(33,50,41),(34,51,42),(35,52,43),(36,49,44),(53,69,61),(54,70,62),(55,71,63),(56,72,64),(57,76,65),(58,73,66),(59,74,67),(60,75,68),(77,85,93),(78,86,94),(79,87,95),(80,88,96),(81,89,99),(82,90,100),(83,91,97),(84,92,98),(101,109,117),(102,110,118),(103,111,119),(104,112,120),(105,113,122),(106,114,123),(107,115,124),(108,116,121),(125,133,141),(126,134,142),(127,135,143),(128,136,144)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,11,3,9),(2,10,4,12),(5,143,7,141),(6,142,8,144),(13,18,15,20),(14,17,16,19),(21,26,23,28),(22,25,24,27),(29,34,31,36),(30,33,32,35),(37,42,39,44),(38,41,40,43),(45,51,47,49),(46,50,48,52),(53,58,55,60),(54,57,56,59),(61,66,63,68),(62,65,64,67),(69,73,71,75),(70,76,72,74),(77,83,79,81),(78,82,80,84),(85,91,87,89),(86,90,88,92),(93,97,95,99),(94,100,96,98),(101,106,103,108),(102,105,104,107),(109,114,111,116),(110,113,112,115),(117,123,119,121),(118,122,120,124),(125,130,127,132),(126,129,128,131),(133,138,135,140),(134,137,136,139)], [(1,58,29),(2,55,33),(3,60,31),(4,53,35),(5,96,120),(6,98,123),(7,94,118),(8,100,121),(9,56,32),(10,59,34),(11,54,30),(12,57,36),(13,63,41),(14,68,39),(15,61,43),(16,66,37),(17,64,40),(18,67,42),(19,62,38),(20,65,44),(21,71,50),(22,75,47),(23,69,52),(24,73,45),(25,72,48),(26,74,51),(27,70,46),(28,76,49),(77,107,126),(78,102,132),(79,105,128),(80,104,130),(81,103,125),(82,108,129),(83,101,127),(84,106,131),(85,115,134),(86,110,140),(87,113,136),(88,112,138),(89,111,133),(90,116,137),(91,109,135),(92,114,139),(93,124,142),(95,122,144),(97,117,143),(99,119,141)], [(1,77,3,79),(2,81,4,83),(5,72,7,70),(6,76,8,74),(9,78,11,80),(10,84,12,82),(13,89,15,91),(14,87,16,85),(17,86,19,88),(18,92,20,90),(21,99,23,97),(22,95,24,93),(25,94,27,96),(26,98,28,100),(29,107,31,105),(30,104,32,102),(33,103,35,101),(34,106,36,108),(37,115,39,113),(38,112,40,110),(41,111,43,109),(42,114,44,116),(45,124,47,122),(46,120,48,118),(49,121,51,123),(50,119,52,117),(53,127,55,125),(54,130,56,132),(57,129,59,131),(58,126,60,128),(61,135,63,133),(62,138,64,140),(65,137,67,139),(66,134,68,136),(69,143,71,141),(73,142,75,144)]])

Matrix representation of C32⋊CSU2(𝔽3) in GL8(𝔽73)

640000000
064000000
00100000
00010000
0000362800
0000283600
0000003645
0000004536
,
10000000
01000000
0036450000
0045360000
0000364500
0000453600
0000003645
0000004536
,
1272000000
7261000000
000720000
007200000
00000100
00001000
000000720
000000072
,
072000000
10000000
00010000
00100000
000072000
000007200
000000072
000000720
,
65000000
666000000
00001000
00000100
00000010
00000001
00100000
00010000
,
460000000
4127000000
006530000
0020670000
000000653
0000002067
000065300
0000206700

G:=sub<GL(8,GF(73))| [64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,28,0,0,0,0,0,0,28,36,0,0,0,0,0,0,0,0,36,45,0,0,0,0,0,0,45,36],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,45,0,0,0,0,0,0,45,36,0,0,0,0,0,0,0,0,36,45,0,0,0,0,0,0,45,36,0,0,0,0,0,0,0,0,36,45,0,0,0,0,0,0,45,36],[12,72,0,0,0,0,0,0,72,61,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0],[6,6,0,0,0,0,0,0,5,66,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[46,41,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,6,20,0,0,0,0,0,0,53,67,0,0,0,0,0,0,0,0,0,0,6,20,0,0,0,0,0,0,53,67,0,0,0,0,6,20,0,0,0,0,0,0,53,67,0,0] >;

C32⋊CSU2(𝔽3) in GAP, Magma, Sage, TeX

C_3^2\rtimes {\rm CSU}_2({\mathbb F}_3)
% in TeX

G:=Group("C3^2:CSU(2,3)");
// GroupNames label

G:=SmallGroup(432,247);
// by ID

G=gap.SmallGroup(432,247);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,254,261,1011,3784,1908,172,2273,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=e^3=1,d^2=f^2=c^2,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b^-1,d*c*d^-1=f*d*f^-1=c^-1,e*c*e^-1=c*d,f*c*f^-1=c^2*d,e*d*e^-1=c,f*e*f^-1=e^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊CSU2(𝔽3) in TeX
Character table of C32⋊CSU2(𝔽3) in TeX

׿
×
𝔽